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Abstract A set of 114 recombinant inbred lines of the
‘International Triticeae Mapping Initiative’ mapping pop-
ulation was grown during the seasons 1997, 1998, 1999
and 2000 under several environments. Twenty morpho-
logical (glume colour, awn colour, waxiness, leaf erect-
ness, peduncle length), agronomical (ear emergence time,
flowering time, grain filling time, ear length, plant
height, lodging, grain number, thousand-grain-weight,
grain weight per ear, grain protein content, winter hardi-
ness) and disease resistance (powdery mildew, yellow
rust, leaf rust, fusarium) traits were studied. Not all traits
were scored in each experiment. In total 210 QTLs with a
LOD threshold of >2.0 (minor QTLs) were detected of
which 64 reached a LOD score of >3.0 (major QTLs).
Often QTLs were detected in comparable positions in dif-
ferent experiments. Homologous and homoeologous rela-
tionships of the detected QTLs, and already described
major genes or QTLs determining the same traits in
wheat or other Triticeae members, are discussed.

Keywords Agronomic traits - Genetic mapping - QTL -
Disease resistance - Morphological traits - Wheat

Introduction

Genetic studies of agronomic important traits in cereals
have revealed that most of them are inherited quantita-
tively and, therefore, they are difficult to detect within
the genome. However, with the development of high-
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density linkage maps the discovery of such quantitative
trait loci (QTLs) became possible in many species. In the
Triticeae, QTLs for several characters, including grain
yield, disease resistance, winter hardiness or tissue-cul-
ture ability, have been described in barley (Hayes et al.
1993; Backes et al. 1995; Mano et al. 1996; Steffenson
et al. 1996; Bezant et al. 1997), wheat (Galiba et al.
1995; Nelson et al. 1995a, b, ¢; Ben Amer et al. 1997) or
rye (Borner et al. 1999, 2000).

In hexaploid wheat the ‘International Triticeae Map-
ping Initiative’ (ITMI) was established in the early
Nineties and used world-wide for joint mapping of
RFLP (Nelson et al. 1995a, b, c; Van Deynze et al. 1995;
Marino et al. 1996) or microsatellite markers (Roder et
al. 1998). To-date about 800 RFLP loci and 600 micro-
satellite markers have been mapped (Roder et al. 1998;
Roder, personal communication). Although molecular
well-characterised recombinant inbred lines exist, only
few data on using that population for trait mapping are
described. For some major genes, determining red grain
colour (R1, R3), red coleoptile colour (Rcl, Rc3), inhibi-
tion of epidermal waxiness (W2/), kernel hardiness (Ha),
vernalisation response (Vinl, Vin3) or leaf rust resis-
tance (Lr34), the already known map positions have
been confirmed (Nelson et al. 1995a, b, c; Sourdille et al.
1996; Khlestkina et al. 2001), whereas new QTLs were
described for leaf and stem rust (Nelson et al. 1995a),
Pyrenophora tritici-repentis resistance (Faris et al.
1996), Karnal bunt (Nelson et al. 1998) or stripe rust
(Singh et al. 2000).

In the present study a set of 114 RILs of the ITMI
mapping population was evaluated for morphological,
agronomical and disease resistance traits during the sea-
sons 1997, 1998, 1999 and 2000 under several environ-
ments. Homologous and homoeologous relationships of
the detected QTLs, and comparable major genes or
QTLs already described in wheat or other Triticeae
members, are discussed.
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Fig. 1A-H Genetic linkage map of wheat showing 211 quantita-
tive trait loci distributed over 20 chromosomes. The effects con-
tributed by “W7984’ and ‘Opata 85’ are given on the left and right
hand side of each chromosome, respectively. Supported intervals
for QTLs are indicated by vertical bars. LOD max is pointed
by a triangle. Black bars and triangles indicate QTLs with a LOD
threshold of >3.0. The scores are given on the left. Open bars
and triangles indicate QTLs with LOD scores between 2.0
and 3.0. The experiments and years in which the QTLs were de-
tected are given in brackets (for explanation see Table 1). ¢ = cen-
tromere position. Regions of chromosome arms 2AS, 3AL
and 4AL which should move to distal parts of chromosome arms
2BS, 3DS and 7DS, respectively, are hatched

Materials and methods
Plant materials

The ITMI mapping population was created by crossing the spring
wheat variety ‘Opata 85° with the synthetic hexaploid wheat
‘W7984°, generated via a cross of the Triticum tauschii accession
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‘CIGMS86.940’ (DD) with the tetraploid wheat ‘Altar 84 (AABB).
The interspecific cross was carried out by Dr. A. Mujeeb-Kazi, In-
ternational Maize and Wheat Improvement Center, Mexico. How-
ever, recent results of Singh et al. (2000) indicate that the pedigree
of the synthetic wheat may not be correct. From a total of 150
RILs developed by single-seed descent to the Fg or Fy at Cornell
University, Ithaca, USA, ten seeds of 114 randomly selected lines
were obtained by Dr. Philippe Leroy, INRA, Clermont-Ferrand,
France. The lines were bulked and divided for performing the
experiments described below.

Target trait analyses

Ten seeds obtained were divided into two groups of five seeds,
each which were grown under a short photoperiod (10 h light and
14 h darkness) in a growth chamber and under a long photoperiod
(14 h light and 10 h darkness) in the green-house, respectively.
Besides flowering time, further morphological and agronomical
data were scored (see Table 1).

The multiplied stocks were divided and grown in plots during
the 1998 season at three sites at the IPK in Gatersleben, at the
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Institut fiir Pflanzenziichtung und Pflanzenschutz, Martin-Luther-
Universitdt Halle-Wittenberg, in Hohenthurm, and at Monsanto
Agrar Deutschland GmbH in Silstedt. Using the seeds of the 1998
harvest the RILs were grown again at all three sites in 1999, and at
Gatersleben and Hohenthurm in 2000. The sizes of the plots were
3 m2, 4.5 m2 and 9 m? at Gatersleben, Hohenthurm and Silstedt,
respectively. For evaluating winter hardiness, the population was
sown in autumn 1999 at IPK. Winter hardiness and yellow rust
could also be scored in an additional experiment at Hohenthurm
sown in autumn 2000. In total 20 characters were scored in the
different experiments, and divided into morphological, agronomic-
al and disease resistance traits. Not all characters were recorded in
each experiment (see Table 1).

For determining winter hardiness, awn and glume colours,
waxiness, leaf erectness and lodging, the intensity of phenotypic
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expression was scored on scales of 1-3, 1-5 or 1-9. Days to ear
emergence and flowering time were recorded when >50% of the
ears of each RIL had left the flag leaf or flowered. Grain-filling
time was measured as the time between flowering and maturity
(DC92). Plant heights and peduncle lengths were recorded just be-
fore harvest. After harvest, ear length, grain weight per ear, grain
number and thousand-grain-weight were determined from three to
five main spikes per line. For assessing grain protein content,
near-infrared spectroscopy with the Infratec 1255 Food and Feed
Analyser of Persdorp was used. The method had been calibrated
on a sample set of 80 wheat genotypes assayed in parallel with the
Kjeldahl method.

The RILs were scored for the three leaf diseases, powdery
mildew (Erysiphe graminis), yellow rust (Puccinia striiformis)
and leaf rust (Puccinia graminis), as well as for the ear disease fu-



Fig. 1 (continued)

QELipk-2D (HFS98)
3.07' Y QGwe.ipk-2D (GFS98)

5.13 w QHt.ipk-2D (GFA99)
QGwe.ipk-2D (SFS99)

QTgw.ipk-2D (SFS99)

sarium (Fusarium graminearum). The severity of natural (mildew
and rusts) or artificial infections (fusarium) on a scale of 1-9 was
recorded at the adult-plant stage in the field.

Statistical analysis

QTL analysis was performed with MAPMAKER/QTL 1.1 (Paterson
et al. 1988). This program uses the Haldane mapping function
(Haldane 1919). Therefore, the mapping data published in the Grain-
Genes database (gopher:http: //www.greengenes.cit.cornell.edu) had

925

@
o
s
e o«
5 8
g % o
. o -
g8 2DS g
§ § S o.o_F w2 %
w o~
~ 9 * o o —~
8 a & 9 T 3 £
7] : Q o u 7
[TVOY s O (% I w
e = g ¢ 8 5 ¢
Q g 18.4 - Xcmwg682 Q s N 9
58 2 308 4
I p 26.4 - Xcdod56 5 § 3 <
S H 9 <] Q
= g & 31.4 Y xbecd18 g E» K g
- e - 33.7 -~ Xbcd1970 < ||o U
g -~ u & I~ 38.0 - Xbcd718 o
? 2 O ] & S Q
£ 2 3 3 5 8 & is
¢ w 8§ 5 2 9 44.5 - Xbcd102 58
S5 & 516 9 Iz
x ~ = D D (<]
sif & & Q
S| &N & 5 8 ] 54.2 4} Xfbad00 = K
&l = 3| &f 3 3
lé w < w o)
gl &f $ e U
S © Q
¢ K -
:f < 3
“fy _ 739+ Xcdo1379 §
o
U~ S8 5
Qg x4
i <2 :
zﬂ g w
& 93.6 -{{- Xcdo1479
> &
=7 1013 |- Xbcd262
123.2 4 Xwsut o
@2
723
130.3 41~ Xcdod05 = a
e 8
@ s
¢ I3
141.7 1~ Xbcd260 ) g
C 3
2
150.2 Xbcd120 N
151.7 AN Xbed111 é
167.2 Xtam8 >
168.9 Xfbb99 b
169.7 Xfba74 ©
175.3 Xfba62 — =
175.3\M), xb122 & 2
175.3 Xfba111 85 ¢ 2
175.3 Xfbb32 {;8 £ Z
177.0 Xfba341 SO S 3
s 1770 I\ xrmb284 £= e 2
a 177.0 Xfba61 b 8 g
1 178.7 Xfba64 3 s
< 185.0 Xfbb68 B 2
9 189.0 Xcdo1008 S ||g
) 194.0 Xfba116
3 194.9 Xfbb9
5 198.8 Xfbb251
<] 202.8~ Xfbb72

208.2 XksuH9

209.2>< Xglk558
XksuD23

XksuH16

3.15Yy QPm.ipk-2D
L (HFS99)

222.8 - Xcdo36

to be used to re-calculate the map with MAPMAKER/EXP 3.0
(Lander et al. 1987) employing the Haldane mapping function. Only
those markers mapped before with the Kosambi mapping function
(Kosambi 1944) were used.

In contrast to the mapping data published in the GrainGenes
database three changes were described by Roder et al. (1998) and
Pestsova et al. (2000), suggested by the results of nulli-tetrasomic
or di-telosomic analyses. Based on these results the distal parts of
chromosomes 2AS, 3AL and 4AL should move to the ends of
chromosomes 2BS, 3DS and 7DS, as indicated in Fig. 1. In the
present study we use the published GrainGenes framework maps.
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Fig. 1 (continued)
Legend see page 923
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Fig. 1 (continued) F 5DS
Legend see page 923
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For each trait a separate QTL analysis was performed. Only
loci with a LOD > 2 were taken into account. Several traits were
observed at two or three sites in 2 or 3 years. For ear emergence
time, flowering time, ear length, grain number, thousand-kernel-
weight and grain weight per ear, a three-factorial analysis of vari-
ance with the procedure GLM of SAS (SAS Institute 2000) could
be performed with genotypes, sites and years. Correlation coeffi-
cients were calculated with the procedure CORR for each quanti-
tative trait separately between pairs of environments and between
traits of the same experiment.

Results

In total 99 records covering the 20 characters considered
were analysed. Out of this 84 and 50 were found to be de-
termined by at least one QTL having a LOD score higher
than 2 and 3, respectively, resulting in totals of 210 and 64
QTLs with LODs > 2 and >3, respectively (Table 1).
Twentysix loci were found having LOD scores > 4. The
loci with a LOD score between 2 and 3 will be designated
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Fig. 1 (continued)

as minor QTLs, the ones with LOD scores > 3 as major
QTLs. The symbolisation of the QTLs follows the rules of
Mclntosh et al. (1998). The trait designators (symbols)
used are given in Table 1. The map positions of the QTLs
together with their supported intervals are presented in
Fig. 1. The loci are distributed over all chromosomes ex-
cept 5B. The experiments and years in which the QTLs
were detected are given in brackets behind each QTL. The
effects contributed by “W7984° and ‘Opata 85 are given
on the left and right hand side of each chromosome, re-
spectively. Discussed in the following are mainly major
QTLs. Minor QTLs were included only if they were in the
same position as major QTLs or as in other experiments.
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Morphological/colour traits

For awn and glume colour both major and minor
QTLs were discovered, mainly contributed by “W7984°.
Whereas the major QTLs for awn colour were detected
in the distal regions of chromosomes 1A (two experi-
ments), 1B (one experiment) and 1D (two experiments
together with one minor QTL), major loci for glume col-
our were found on chromosome arm 1DS (three experi-
ments), again in the distal region and on chromosome
arm 2DS (one experiment). In two experiments QTLs
with a LOD score between 2 and 3 were associated with
one region on chromosome arm 7BL.
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Leaf erectness was scored in two experiments only,
and two major QTLs were discovered on chromosome
arms 2AS and 2DL, both transmitted by ‘Opata 85°.
Also two major QTLs were found in different experi-
ments for peduncle length at the same position on chro-
mosome arm 6AS close to the centromere. The extended
peduncle is contributed by synthetic wheat. Only QTLs
with LOD scores between 2 and 3 were identified for
waxiness. Loci of repeated experiments are located on
chromosome arms IDL (two experiments), 2DL (two
experiments) and 4AL (two experiments).

Agronomic traits

For the two related traits, ear emergence time and flow-
ering time, major and/or minor QTLs were detected in
comparable regions of the genome. For ear emergence
time major loci were found to map on chromosome arm
2DS (together with one minor QTL) and on chromosome
arm 5DL (detected in three experiments, together with
two minor QTLs). In two experiments minor QTLs were
detected in the distal region of chromosome arm 7DS.
Growing the RILs under a short photoperiod, one major
QTL was found for the trait flowering time on chromo-
some arm 2DS. In the field studies, minor loci determin-
ing flowering time were mapped in the same position
(three experiments). Minor loci were also found in the
homoeologous region on chromosome arm 2BS (three
experiments). Further QTLs were found again on chro-
mosome arm 5DS (major loci detected in three experi-
ments) and on chromosome arm 3AL (one major QTL
together with one minor QTL). For most of the loci the
‘Opata 85’ alleles determined earliness. Exceptions are
the QTLs detected on chromosomes 3A and 7D.

Four major QTLs were detected for plant height on
chromosome arms 1AS, 2DS, 4AL (detected in two ex-
periments together with minor QTLs detected in three
experiments) and 6AS (detected in two experiments to-
gether with minor QTLs detected in three experiments).
The trait is contributed by alleles of both parents. Corre-
lated with plant height, but scored in only two experi-
ments, lodging was found having one major QTL on
chromosome arm 6AS and two minor QTLs on 2D.

The highest number of QTLs was detected for the
trait ear length, measured in 9 of the 11 experiments.
The main loci were mapped on chromosome arms 1BS
(major and minor loci from two and three experiments,
respectively), 4AS (one major QTL), 4AL (major and
minor loci from four and three experiments, respec-
tively) and SAL (one major locus and three minor loci).
The increase in ear length was again transmitted by
alleles of both parents.

The traits winter hardiness and grain-filling time were
scored in only two and one experiments, respectively.
For winter hardiness, contributed by ‘Opata 85°, one ma-
jor QTL was mapped on chromosome arm 6AS (in two
experiments with LOD scores of 15.34 and 15.12, re-
spectively). The grain-filling time was determined by
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one major QTL on chromosome arm SAL and one minor
QTL on chromosome 5B. The extension of that period
was due to the “W7984" alleles.

Two and three major QTLs together with several
minor QTLs were detected for the yield components
grain number and thousand-grain-weight, respectively.
The number of grains per ear is determined by major
QTLs on chromosome arms 2DS and 4AL (detected in
two experiments together with one minor QTL). Major
QTLs for grain weight map on chromosome arms 3AS,
SAL (together with one minor QTL) and 6BS. For the
trait grain weight per ear, the product of the two compo-
nents, grain number and grain weight, three major QTLs
could be mapped on chromosome arms 2DS (detected in
four experiments), 4AL (together with one minor QTL)
and 6BL. Both alleles of ‘Opata 85" and “W7984" con-
tributed to the yield and its components. Only minor
QTLs were discovered for the grain protein content on
the short arms of chromosomes 7A (two experiments)
and 2D.

Disease resistance

For all four diseases considered, at least one major QTL
was detected. For fusarium resistance a major QTL was
detected on the long arm of chromosome 6B, together
with one minor QTL on 5A. Three major QTLs were
mapped for mildew resistance. They are located on chro-
mosome arms 2DL and 7DS (together with two minor
QTLs) and on chromosome 4B (centromere). Rust resis-
tance major QTLs were detected on chromosome arms
2BS (detected in four from six experiments) and 7AL for
yellow rust and 7DS (one major and one minor QTL)
for leaf rust, respectively. Whereas rust resistance was
mainly contributed by ‘Opata 85  several alleles for
mildew resistance originated from ‘W7984°.

Correlations between experiments and traits

The analysis of variance showed that strong differences
exist between genotypes for all seven analysed quantita-
tive traits (Table 2). The interaction with sites and with
years was much smaller. Nevertheless, the experiments
showed that the interaction with years was significant for
the agronomic traits and with sites for the yield compo-
nents thousand-grain-weight and grain number.

The correlation coefficients for the single traits be-
tween pairs of experiments were in the range between
0.58 and 0.76 for the agronomic characters (Table 3).
These correlation coefficients can serve as rough esti-
mates of heritability in these experiments. There was
some variation in size between pairs of experiments. The
corresponding correlation coefficients for yield compo-
nents were lower and ranged between 0.31 and 0.54.

The quantitative traits formed two distinct groups
(Table 4). Flowering time was highly correlated with
ear emergence, as expected. Ear length, plant hight, pe-
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Table 2 Analysis of variance for quantitative traits tested over sites (G = Gatersleben, H = Hohenthurm, S = Silstedt) and years (1998

and 1999)
Trait Sites Genotypes Genotypes x sites Genotypes x years Error
df m.s. df m.s. df m.s. df m.s.
Ear emergence time G, H 114 26.58 104 1.84 114 243 101 1.70
Flowering time G, H 114 30.10 105 2.96 114 3.86 100 2.31
Ear length G,H,S 114 5.29 205 0.70 113 0.73 170 0.52
Plant height H, S 106 180.51 94 32.67 93  49.08 77 27.29
Grain number G,H,S 113 299.42 201 5343 107 43.72 167  39.83
1000-grain-weight G,H, S 113 130.70 205  49.89 113 45.29 173 3448
Grain weight/ear G,H, S 114 0.86 205 0.25 113 0.25 169 0.21
Table 3 Correlation coeffi- . .. .
cients between experiments Trait Minimum Mean Maximum
Ear emergence time 0.69 0.76 0.84
Flowering time 0.60 0.73 0.84
Ear length 0.32 0.61 0.82
Peduncle length 0.53 0.69 0.75
Plant height 0.29 0.58 0.77
Grain number 0.39 0.54 0.67
1,000-grain-weight —-0.05 0.31 0.58
Grain weight/ear 0.16 0.37 0.52
Table 4 Correlation coefficients between traits of the same experiment
Trait Flowering Peduncle Ear Plant Grain 1000-grain-  Grain
time length length height number weight weight/ear
Ear emergence time 0.83 0.01 0.07 0.10 0.08 -0.08 0.05
Flowering time -0.04 0.05 0.08 0.06 -0.10 0.03
Peduncle length 0.30 0.66 0.21 0.23 0.37
Ear length 0.46 0.48 0.21 0.51
Plant height 0.33 0.30 0.47
Grain number -0.04 0.83
1000-grain-weight 0.48

duncle length, grain weight per ear and kernel number
formed the other group of positively correlated traits.
No correlation was found between these groups.

Discussion

Relationships between detected QTLs and major genes,
or QTLs mapped in other experiments

Genes determining the coloration of the glumes and
awns are described as being located on the short arms of
the homoeologous group-1 chromosomes (MclIntosh et
al. 1998) as are most of the major QTLs detected here. It
is very likely that the glume colour QTLs found on chro-
mosome arm 1DS belong to the major gene Rg2 (red
glume). Also at the distal end of chromosome arm, 1DS
closely linked to Gli-DI the gene Brg (brown glume)
was localised by Koval (1994). It was assumed that Brg
and Rg2 may be allelic. As shown in Fig. 1 the QRg.
ipk-1D loci were also linked to XGlil. No glume colour
genes have been described in the region of QRg.ipk-2D.

In general, awn colour is described to be associated
with glume colour. According to Panin and Netsvetaev
(1986) black awns are determined by three complemen-
tary genes designated Blal, Bla2 and Bla3. Blal was
located on chromosome 1AS linked to Gli-Al. All the
major QTLs mapped in the ITMI population were found
to be closely linked to the XGIi loci on chromosome
arms 1AS, 1BS and 1DS and, thus, may correspond with
the Bla genes.

The morphological trait-leaf erectness has not previ-
ously been considered in genetic studies so far, except
for mutants lacking the ligules which are known to have
erect leaves. In wheat two liguless mutants designated
lgl and Ig2 are located on chromosomes 2B and 2D,
respectively (Mclntosh et al. 1998). Homoeologous loci
are also known in barley, rye, maize and rice (Korzun et
al. 1997). It should be mentioned here that plant breeders
recently recognised that a certain architecture of the
plants may provide the possibility to escape from diseas-
es. So could more-erect leaves decrease the infection of
plants with spores from the straw retained in the soil
after the harvest of the year before. Two major loci



determining leaf erectness were detected on chromosome
arms 2AS and 2DL, respectively. Although the latter
was mapped in the region most probably carrying /g2
(Korzun et al. 1997) it is not related to that mutant. All
RILs of the ITMI population carry ligules.

Another trait that may be important for disease escape
is peduncle length. In general it is known that plants hav-
ing short peduncles are more susceptible to ear diseases
because of micro-climatical conditions. The mapping
studies presented here give clear indication that there
exists at least one major QTL, detected in two experi-
ments in the centromere region of chromosome 6A,
which could be exploited in the future.

For the trait waxiness the ITMI population was
already screened by Nelson et al. (1995a). The authors
detected one locus determining waxiness on chromo-
some arm 2DS distally, and suggested that the mapping
population is segregating for the gene W2/ which is
known to be located in that position. In our studies this
result could not be confirmed. Instead of one major locus
on 2DS minor QTLs were detected in repeated experi-
ments on chromosome arms 1DL, 2DL and 4AL
suggesting that the inheritance of that character is more
complex than expected.

By scoring the traits ear-emergence time and flower-
ing time major QTLs were detected in regions of the ge-
nome known to carry major genes for photoperiod and
vernalisation response in wheat (Mclntosh et al. 1998)
and other Triticeae (Borner 1999). On chromosomes 2BS
and 2DS the major genes Ppd2 and Ppdl, respectively,
are located, whereas the detected QTLs on 5DL corre-
spond with Vrn-DI. This vernalisation response locus
was already discovered by Nelson et al. (1995c) in the
same mapping population.

In two experiments minor QTLs for ear-emergence
time (QFet.ipk-7D) were detected in the distal region of
chromosome arm 7DS. A homoeology to a vernalisation
response gene in the distal region of chromosome 7DS
described by Law (1966) and Law and Wolfe (1966)
and designated Vrn-B4 (Mclntosh et al. 1998) may be
suggested. QFet.ipk-7D is located on the segment of
the 7DS chromosome which is homoeologous to 4AL
(Nelson et al. 1995¢) carrying the Wx locus determining
the amylose content of the starch. Araki et al. (1999) de-
scribed a QTL for flowering time closely linked to Wx
on chromosome arm 4AL, which may also be related to
the minor QTL on chromosome arm 4AL detected here.

The flowering-time locus on chromosome arm 3AL
may correspond with an earliness per se gene (Eps-Al)
affecting the plant development, independent of the re-
sponse to vernalisation and photoperiod (Miura et al.
1999; Mclntosh et al. 2000). However, taking into con-
sideration the suggested changes of the RFLP maps de-
scribed by Pestsova et al. (2000), the QTL for earliness
per se may be located on chromosome arm 3DL instead
of 3AL. It should be mentioned here that, in barley,
QTLs determining flowering time were also detected in
the distal region of chromosome arm 3HL (Laurie et al.
1995; Noli et al. 2000).
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Besides flowering time the time for grain filling influ-
ences the time of harvest and, to some extent, the final
grain yield. Plants having a lengthened grain-filling time
may have higher grain weights. Loci determining the
trait were detected on the long arms of chromosomes 5A
and 5B. No data have been described in the literature.

Final plant height is known to be determined by many
genes (Borner et al. 1996). Therefore, it was not surpris-
ing that in the present study many QTLs were detected.
Only one locus was found to be in the position of a
known major dwarfing gene (RAt8) on the short arm of
chromosome 2D (Korzun et al. 1998), although the
effect on height may be also caused by pleiotropy of the
detected Ppd locus, as described by Borner et al. (1993).
QTLs for plant height were already detected by Cadalen
et al. (1998), of which three were in comparable posi-
tions on chromosome arms 1AS, 1BL and 4BL, as dis-
covered here. Of further interest may be the two loci on
chromosome arms 4AL and 6AS, where major and
minor QTLs were detected in several experiments.

The former locus was also found to affect ear length
as shown by the presence of four major and four minor
QTLs. In the literature only one locus determining ear
length (Qel.ocs-5A.1) was described to be mapped on
chromosome arm 5AL (Kato et al. 1999), in a region
comparable to the map position of the QTLs shown in
Fig. 1.

The two loci detected for lodging correspond with the
plant height QTLs on chromosomes 6A and 2D, and are
most probably pleiotropic effects. Keller et al. (1999a)
detected 29 QTLs for lodging in three experiments of
which none were found to map on chromosomes 2DS
and 6A.

Genes determining winter hardiness or frost resis-
tance are known to be located chromosome arms SAL
(Frl) and 5DL (Fr2) of wheat, closely linked to the Vin
genes (Galiba et al. 1995; Snape et al. 1997). QTLs asso-
ciated with low-temperature tolerance were also de-
scribed in a comparable region of chromosome S5H
(Hayes et al. 1993; Pan et al. 1994). In the present inves-
tigation no homoeologous group-5 locus was detected;
however, strong effects were associated with chromo-
some arm 6AS. It should be noted that the QTLs for win-
ter hardiness described here were detected in a spring
wheat mapping population contributed by ‘Opata 85°.
Whether they will be expressed in a winter wheat back-
ground can only be speculated.

The inheritance of the character grain yield and its
components is known to be complex. The study of the
genetics of such multiple traits becomes possible only by
performing QTL analyses. First experiments on mapping
QTLs for yield and yield components in wheat consider-
ing chromosome 4A only, were described by Araki et al.
(1999). Interestingly, the authors describe a QTL for
grain weight per ear in the centromere region of chromo-
some 4A, which may correspond to the locus detected in
the ITMI population. However, whereas Araki et al.
(1999) found the QTL for grain yield to be associated
with a QTL for grain weight, in the present study it
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aligns with loci for grain number and spike length. The
major QTLs discovered on chromosome arm 2DS are
most probably caused by pleiotropy of Ppd-DI, known
to affect yield (Borner et al. 1993).

QTL mapping studies for grain protein content were
performed by several authors considering tetraploid
(Blanco et al. 1996; Joppa et al. 1997; Mesfin et al.
1999) and hexaploid (Prasad et al. 1999) wheats. Loci
were described to map on chromosome arms 4BS, 5AL,
6AS, 6BS, 7BS or 2DL. None of these loci were
detected in the ITMI population. Here the distal parts of
chromosome arms 7AS and 2DS were found to carry
loci for grain protein content detected by using near-
infrared spectroscopy.

From the four diseases scored in the present study
leaf rust and yellow rust were already studied by Nelson
et al. (1995a, ¢, 1997) and Sing et al. (2000), respec-
tively, investigating the ITMI population. The presence
of a major QTL on chromosome 7DS corresponding to
Lr34 was confirmed. Whether the minor QTLs detected
on chromosome arms 1AS and 3BS correspond to the
seedling resistance genes Lr/0 and Lr27, respectively,
can only be speculated.

About 50 major genes were described for yellow rust
(Mclntosh et al. 1998). Two of them, Yr27 and YrCv,
were located on chromosome arm 2BS; however they
have not been mapped. The major QTL detected in four
of six experiments in our studies may be one of these
loci. To clarify this allelic test, crosses will become
necessary. No major genes are known on chromosome
arm 7AL. Interestingly, none of the yellow rust QTLs
detected by Sing et al. (2000) on chromosome arms 3BS,
3DS, 4DS and 5DS were confirmed in the present inves-
tigation.

All three major QTLs discovered for mildew resis-
tance can be discussed in relation to literature data. The
locus on chromosome arm 7DS may be associated with
Pml5 described by Tosa and Sakai (1990), whereas
QOPm.ipk-2D was found to map in a region comparable to
that of QPm.sfr-2D, mapped in a wheat x spelt popula-
tion (Keller et al. 1999b). The third locus was mapped in
the centromere region of chromosome 4B and may cor-
respond to Mld located, but not mapped, on that chromo-
some (Bennett 1984).

Most cultivars of common wheat are susceptible to
the ear disease fusarium head blight (Mesterhazy et al.
1999), and only a few sources for resistance are known,
mainly originating from China. QTL mapping studies
were performed by Bai et al. (1999) and Waldron (1999).
The latter detected two significant QTLs (LOD > 3.0) on
chromosome arms 3BS and 2AL whereas loci on chro-
mosome arms 4BL and 6BS did not reach the LOD
threshold of 3.0. The QTLs detected by Bai et al. (1999)
were associated with AFLP markers without chromo-
somal location. No QTLs were mapped on chromosome
arms 5AS or 6BL. However, chromosomes 5A and 6B
were found to be associated with fusarium resistance by
Grausgruber et al. (1998) and Buerstmayr et al. (1999)
analysing cytogenetic tester stocks.

It must be noted that not in every experiment were all
diseases scored. For the rusts and for mildew, only natu-
rally occurring infection was tested. Fusarium was
scored only once, powdery mildew in seven experi-
ments, leaf rust in five and yellow rust in six experi-
ments.

Relationships between experiments

With the analysis of QTLs, critical chromosomal regions
can be identified. This is the main goal of the so called
AB-QTL approach (Tanksley and Nelson 1996). With
this method regions in exotic materials can be searched
for, which could be of interest for transfer into breeding
material. The situation in this study is quite similar. Both
parents of the mapping population are exotic and not
adapted to middle-European conditions. Plant breeders
can use information from QTL analysis only if the results
can be reproduced. This was done here with the same
material, changing only the environment. However, even
in this case the QTLs could not be detected in all experi-
ments. The main reasons are the interaction between ge-
notypes and environments, and the experimental error.

The major QTL for yellow rust on 2BS could be de-
tected in four out of six experiments, indicating a very
low degree of interaction. This may be explained by as-
suming a very stable yellow rust population. The resis-
tance was transmitted from ‘Opata 85’. On 7D a locus
for resistance against powdery mildew was found in two
experiments, and in the same region for the same two
experiments, for leaf rust, though both diseases were
recorded in seven and five experiments, respectively.

QTLs can be detected only if the parents carry differ-
ent alleles. The favourable allele may be very specific
for one of the parents and can not be found in other
genotypes. Nevertheless, the detected QTLs indicate that
an improvement is possible if chromosomal regions with
positive effects are combined.

As indicated, the quantitative traits were correlated.
This resulted in QTLs for more than one trait at the same
position. The data do not allow one to separate closely
linked loci and pleiotropy.

In the literature a LOD of <3 is often considered as a
lower value, since the QTL analysis is faced with multi-
ple testing (Lander and Botstein 1989). However, major
and minor QTLs were detected at the same position in
different experiments for several traits. Therefore LOD
values <3 should also be taken into account in repeated
experiments.

In this study, no QTLs for main effects over experi-
ments have been estimated. This has two reasons. First,
not all traits could be evaluated in all experiments so that
the results for different traits could be compared only on
the basis of single experiments. Second, the experiments
focused on the interaction between genotypes and envi-
ronments to check if results from one experiment allows
conclusions for other experiments. To do this, experi-
ments must be analysed separately. The main conclusion



of the results is that there is no way to circumvent
repeated experiments, but some QTLs could also be
detected in independent trials.
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